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Organisational

X The talk is structured into three main parts:
1. Overview and results (Philipp Arras)
2. Prior and likelihood (Philipp Frank)
3. Inference scheme and validation (Jakob Knollmüller)

X The presentation material (including the videos) is available at:
https://philipp-arras.de/2021cfa.html

X Our paper [AFH+20] is available at:
https://arxiv.org/abs/2002.05218

X The imaging code is available under GPL license (see link in paper).
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Starting situation

Figure 1: M87* on day 0 imaged with
ehtimaging [AAA+19b]. Saturated
color bar.

X Uncertainty quantification via multiple
independent imaging teams

X Independent imaging for each observing day
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Idea

Product Rule of Probabilities
aka Bayes’ theorem

P(s|d) = P(d|s)P(s)
P(d)

P(A|B): conditional probability,
s: parameters, d: data.

(Some) assumptions
X The brightness is strictly positive.
X The source features correlation in
spatial, temporal and frequency
direction.

=⇒ Encoded in P(s).

In our case

X Correlation structure→ full 4d-movie: sky brightness has shape (2, 28, 256, 256).
X The posterior P(s|d) is a ridiculously high-dimensional function:{

R7.500.000 → R≥0

s 7→ P(s|d)

X This function encodes our knowledge on M87* including uncertainties.
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5
ehtimaging, [AAA+19b], day 6.



6
ehtimaging, [AAA+19b], day 5.



7
ehtimaging, [AAA+19b], day 1.



8
ehtimaging, [AAA+19b], day 0.



9
vlbi-resolve, [AFH+20], day 0.



vlbi-resolve, [AFH+20], posterior mean.



vlbi-resolve, [AFH+20], 16 posterior samples.



Data consistency

Figure 2: Three closure phases for triples of antennas as a function of time.
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Ring fitting (see [AAA+19b, Table 7])

d (µas) w (µas) η (◦) A fC

eht-imaging [AAA+19b]
April 5 39.3± 1.6 16.2± 2.0 148.3± 4.8 0.25± 0.02 0.08
April 6 39.6± 1.8 16.2± 1.7 151.1± 8.6 0.25± 0.02 0.06
April 10 40.7± 1.6 15.7± 2.0 171.2± 6.9 0.23± 0.03 0.04
April 11 41.0± 1.4 15.5± 1.8 168.0± 6.9 0.20± 0.02 0.04

Our method
Uncertainty as per [AAA+19b, Table 7])

April 5 44.4± 3.4 23.2± 5.2 164.9± 9.5 0.26± 0.04 0.365
April 6 44.4± 2.9 23.3± 5.4 161.7± 5.6 0.24± 0.04 0.374
April 10 44.8± 2.8 23.0± 5.0 176.7± 9.8 0.22± 0.03 0.374
April 11 44.6± 2.8 22.8± 4.8 180.1± 10.4 0.22± 0.03 0.372
Sample uncertainty

April 5 44.1± 1.2 23.1± 2.4 163.9± 5.0 0.25± 0.03 0.377± 0.081
April 6 44.0± 1.2 22.9± 2.4 161.9± 6.0 0.24± 0.03 0.385± 0.085
April 10 44.6± 1.2 22.9± 2.5 176.2± 6.5 0.22± 0.03 0.383± 0.089
April 11 44.6± 1.2 23.0± 2.6 179.8± 6.2 0.22± 0.03 0.383± 0.090
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Results

Figure 3: M87* on day 0 imaged with
ehtimaging [AAA+19b]. Saturated color bar.

Figure 4: M87* on day 0 imaged with our
algorithm [AFH+20]. Saturated color bar.
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Inference model



Inference Model

Product Rule of Probabilities aka Bayes’ theorem

P(s|d,M) =
P(d|s,M)P(s|M)

P(d|M)
Definitions: s := parameters, d := data,M: model assumptions.

Generative prior model: s(ξ) = FM(ξ) with P(ξ) = N (ξ|0,1)
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Prior



Prior

Sky brightness distribution
sxtν x ∈ Ω ⊂ R2, t ∈ I ⊂ R, ν ∈ V ⊂ R+

Prior assumptions:
Positivity, exponential scaling sxtν = eτxtν
Exploit correlations 〈τx,t,ν τx′,t′,ν′〉P(τ) = C(x, t, ν, x′, t′, ν′)
• Independent correlations = CΩ(x, x′) CI(t, t′) CV(ν, ν′)
• Homogeneity and isotropy = CΩ (|x − x′|) CI (|t − t′|) CV (|ν − ν′|)

⇒ Ci fully determined by associated power spectrum Pi(|k|) ∀i ∈ {Ω, I, V}
Uninformative ⇒ P(τ) = N (τ |0, C)
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Prior - Correlations

P(i)(|k|)

∝ |k|−α

i ∈ {Ω, I, V}
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Prior - Correlations

P(i)(|k|) ∝ |k|−α i ∈ {Ω, I, V}
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Prior - Correlations

P(i)(|k|)

= eq(l) with l = log(|k|)
∂2q
∂l2

= σξq P(ξq) = N (ξq|0,1) Integrated Wiener Process
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Prior - Correlations
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Prior
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Likelihood



The Event Horizon Telescope (EHT)

[AAA+19a]
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The Event Horizon Telescope (EHT)

[AAA+19b]
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Likelihood

X Visibility data d and thermal noise level σ reported by [AAA+19a]

X Direct imaging using visibilities is challenging for VLBI

⇒ Imaging using closure quantities (phases φd and logarithmic amplitudes ρd)

φdclos = Mφd ρdclos = Lρd
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Likelihood

P
(
φdclos|s

)
≈ N

(
eiφ

d
clos |eiφ

s
clos ,MNM†

)
with N = diag

(
σ2

|d|2

)
P
(
ρdclos|s

)
≈ N

(
ρdclos|ρ

s
clos, LNL

†
)

Posterior distribution

P
(
ξ|φdclos, ρ

d
clos

)
∝ P

(
φdclos|s (ξ)

)
P
(
ρdclos|s (ξ)

)
N (ξ|0,1)

with generative prior s (ξ) = FM (ξ)

34



Likelihood

P
(
φdclos|s

)
≈ N

(
eiφ

d
clos |eiφ

s
clos ,MNM†

)
with N = diag

(
σ2

|d|2

)
P
(
ρdclos|s

)
≈ N

(
ρdclos|ρ

s
clos, LNL

†
)

Posterior distribution

P
(
ξ|φdclos, ρ

d
clos

)
∝ P

(
φdclos|s (ξ)

)
P
(
ρdclos|s (ξ)

)
N (ξ|0,1)

with generative prior s (ξ) = FM (ξ)

34



Metric Gaussian Variational
Inference



Variational Inference
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Variational Inference

Kullback-Leibler Divergence

DKL(Qη(ξ)||P(ξ|d)) =
∫
dξ Qη(ξ) ln Qη(ξ)

P(ξ|d)
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Gaussian Variational Inference

Qη(ξ) = N (ξ|ξ̄,Ξ)
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Gaussian Variational Inference

Qη(ξ) = N (ξ|ξ̄,Ξ)

Ξ =


. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .


full-covariance
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Gaussian Variational Inference

Qη(ξ) = N (ξ|ξ̄,Ξ)

Ξ =


. . .

. . .
. . .

. . .


mean-field
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Gaussian Variational Inference

Qη(ξ) = N (ξ|ξ̄,Ξ)

Ξ(ξ) =
(
J(ξ)†Id(θ)J(ξ) + 1

)−1
inverse Fisher metric
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Qη(ξ) = N (ξ|ξ̄,Ξ)

Ξ(ξ) =
(
J(ξ)†Id(θ)J(ξ) + 1

)−1
inverse Fisher metric

J(ξ) = ∂θ(ξ)

∂ξ
Id(θ) =

〈
∂H(d|θ)

∂θ

∂H(d|θ)
∂θ†

〉
P(d|θ)
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Metric Gaussian Variational Inference
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Metric Gaussian Variational Inference
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Metric Gaussian Variational Inference
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Practical Challenges for VLBI

X Nonlinear optimization
X Stochastic loss function
X No absolute source position or
brightness

X Multi-modality
X Multiple source copies
X “Source Teleportation”

40



Inference Heuristic

X Initially fit model to Gaussian shape
X Start with data of the first two days
X Alternate between phase and amplitude
likelihood

X Reduce stochasticity of loss towards the
end
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Validation



Strategy

X Synthetic source
X Generate data according to EHT
observation

X Reconstruct
X Compare to truth

42



Static Source: Simulation
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Static Source: Simulation
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Static Source: Disk
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Dynamic Source: Gaussian Shapes
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Dynamic Source: Crescent
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Hyperparameter Validation

X In total 15 hyperparameters
X Specifying mean and variance
X Draw mean hyperparameters within a
uniform 3σ interval

X Perform 100 reconstructions
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The Good, the Bad and the Ugly

M87* Crescent
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Ring Parameters
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Validation

X Reconstruction works on various
sources

X We recover dynamics
X Results are widely insensitive to
hyperparameters

X Room for improvement in the inference
heuristic
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Conclusion



Conclusion

Figure 5: M87* on day 0 imaged with
ehtimaging [AAA+19b]. Saturated
color bar.

Differences to [AAA+19b]
X Uncertainty quantification via multiple
independent imaging teams

X Independent imaging for each observing day

Some aspects
X Four-dimensional (time, frequency, space)
resonstruction of M87*

X Correlation kernel is non-parametrically learned
from the data

X Bayesian treatment despite huge problem size (107

dofs)

52



Conclusion

Figure 5: M87* on day 0 imaged with
ehtimaging [AAA+19b]. Saturated
color bar.

Differences to [AAA+19b]
X Intrinsic uncertainty quantification
X Independent imaging for each observing day

Some aspects
X Four-dimensional (time, frequency, space)
resonstruction of M87*

X Correlation kernel is non-parametrically learned
from the data

X Bayesian treatment despite huge problem size (107

dofs)

52



Conclusion

Figure 5: M87* on day 0 imaged with
ehtimaging [AAA+19b]. Saturated
color bar.

Differences to [AAA+19b]
X Intrinsic uncertainty quantification
X Temporal correlations→ full 4d-movie

Some aspects
X Four-dimensional (time, frequency, space)
resonstruction of M87*

X Correlation kernel is non-parametrically learned
from the data

X Bayesian treatment despite huge problem size (107

dofs)

52



Conclusion

Figure 5: M87* on day 0 imaged with
vlbi-resolve [AFH+20]. Saturated
color bar.
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Questions? Discussion!
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Spectral dependency

50 µas

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

relative spectral index

0.8 0.9 1.0 1.1 1.2 1.3 1.4

standard deviation

Figure 6: The relative spectral index and the pixel-wise uncertainty, as calculated from the
227–229 GHz channels.



Reduced χ2

April 5 April 6 April 10 April 11

Simulation 1.2, 1.0 1.3, 1.2 1.4, 1.3 1.1, 1.1
Disk 1.6, 1.2 1.4, 1.3 1.5, 1.4 1.3, 1.2
Double Sources 1.2, 1.1 1.2, 1.1 1.3, 1.3 1.4, 1.1
Crescent 1.2, 1.0 1.3, 0.9 1.0, 0.9 1.4, 1.1
M87* 1.1, 0.9 1.1, 0.8 1.1, 0.9 1.1, 0.9

Table 1: The χ2 of the reconstruction for closure (phase, amplitude).
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